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e The scientific approach and models
*  Why modelling?
* Model complexity and model uncertainty
 Examples of model applications
e Decision support on field scale
* Adressing spatial variability
e Evaluation of management options

e Assessing long term effects
* Considering biotic stress
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@ gé??ﬁgL;SUST_UNNERSITAT What is a model?

In general:
» An idealised, simplified or down-sized representation of something ...

+ ... the purpose is to describe, explain or depict the thing the model
represents
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Gz e A simplified description of truth

Claude Monet
(1840-1926)

Impressionism




G e \What is @ model in science?

In science:

» An idealised or simplified conceptual or formal representation of a
phenomenon or item of interest, usually from the real world

+ ... the purpose is to describe, explain or study the real-world phenomenon
the model represents ...

* ... enabling conclusions to be drawn about its properties or behaviour

Part of the scientific method:

+ A model may be thought of as a formalised or explicit hypothesis about the
real-world phenomenon under investigation

+ May be falsified by comparing its predictions to observational data.
False model = rejected hypothesis



G e The model to test hypothesis
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Why are we modelling?

Models can be used to test hypotheses using observed data for a better understanding.

They may also indicate which variables should be observed to confirm the hypothesis
(experimental design).

Experimental data are covering only few combinations of possible climate, site, crop and
management combinations.

Processes are interacting, usually non-linear and response is site specific and therefore
experimental data seem often contradictory.

Not all fluxes can be observed easily or with sufficient accuracy
Responses can be very slowly and would require a long term monitoring to be detectable
Climate change can create situations which are beyond our experience

As long as we achieve a sufficient performance of our model to explain observed phenomena
under multiple conditions, we assume that we can use the model to extrapolate to other
situations even if they are beyond our experience.

This allows the assessment of what-if scenarios
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S But, no data -> no model

Models can complement or extrapolate data, but cannot be used without a reliable
data base.

Models should be validated/evaluated on independent data which are not used for
calibration.

Models should be evaluated applying them to multiple combinations of site and
management conditions to find limitations of assumptions or to falsify hypotheses.

Since processes are interacting, it is necessary to evaluate not only a single output
variable against observed data, but multiple inter-related variables to ensure that
the model gives the right output on the right reason.

However, validation of models has its limitations since ecosystems are open systems
and not all inputs across the system boundaries can be detected.
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@G;QRG_AUGUST_Um,m\/alidation of complex models requires consistent
i data sets of different observed state variables
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G o Model complexity and uncertainty

parameter error

structural error

Uncertainty

complexity
empirical process oriented physicaly based
statistical semi-empiric mechanistic
models models models

adapted from Grunewald



(G s Relationship between parameter uncertainty and

prediction uncertainty

Deterministic model

Stochastic model

Parameter
Representation

95% prediction uncertainty
(95PPU)

Abbaspour, 2005




Stochastic modelling uses stochastic
distributions of input values
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Input variable 1 Input variable 2 Input variable 2

realisations

Monte Carlo simulation generates a large number of input combinations which leads to a
large number of different output values (stochastic distribution)

Introduction of sampling procedures e.g. Latin hypercube (Christiaens und Feyen,2002)
reduces the number of simulation runs



@ GrORG AU ERSTAT Uncertainty of simulated nitrate leaching for barley depending on
fertilization sandy ,,Plaggenesch” (deep accumulated humus layer) over loam
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What'’s the optimum fertiliser rate?

Yield [t ha']
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Callenge: Nitrogen fertiliser demand varies from year to year
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G Sz Scheme of the agro-ecosystem model HERMES
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Scheme of model based fertilizer recommendations

1. 2. 3. Fertilizer application

kg ha'’] ‘Q

™ actual weather data T site specific weather scenario
1

predicted
N demand covered by
subsequent doses

N deficiency

mineral N in root zone e net-mineralisation

N-uptake

day of recommendation m=
N-deficit occurs

next development stage for fertilization

Kersebaum & Beblik, 2001
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G oo Model based fertiliser recommendations compared to
other treatments for different Chinese farmers
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Agronomic efficiency of applied N (NUE,g) =
(fertilised yield - unfertilised yield) / applied
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0O Red-normal

O Red-HERMES

O Farmers pract
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farmers practice

Additional outcome: Low NUE was often related
to suboptimal flood irrigation. Optimizing
irrigation improves WUE and NUE significantly
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Adressing spatial variability within fields (precison agriculture)

20 ha field at Beckum, NRW Range of clay, silt and sand content per
soil texture class (Ad-hoc AG Boden
2005, German Soil Taxonomy)
Soil
texture Clay [%] Silt[%] Sand [%]
class
Soil texture class SI2 5 _ 8 10 _ 25 67 _ 85
[ SI2
- . SI3 8-12 10-40 48-82
§ sk Sl4 12-17 10-40 43-78
R [ Ls3 Ls3 17-25 30-40 35-53
© B Ls4 Ls4 17-25 15-30  45-68
B L2
— Lt2 25-35 30-50  15-45
Coefficient of yield Lt3 35-45 30-50 5-35
variation [%]
@ 7.15-85
@ 851-105
- : 10.51-12.0 =  crop rotation: WW-WW-TR (2000 to 2002)
o 121-145 .
A @ 1451-170 =  weather data from local weather station
[32]
s =  data for validation (soil nitrogen, soil water, yields)

I T
3430600 3431000



G v Examples of model outputs (HERMES) and data
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Results of a model ensemble on soil water and crop yields
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Testing model consistency among output variables

DA
Models‘ consistency: '

High consistency, sufficiently
well calibrated:

Points are close to the
intersection of the zero lines

Consistent, but insufficiently
calibrated: Deviations are in
the same direction

Mean deviation yield [t ha ']
(=]
I
1

Too sensitive showing steep responses  2-
caused by small deviations

Not consistent regarding the response
to the variable or responsive to another -100
variable

I
|
! ! ; I ! ! . ; ) Wallor et al. 2018
100 200 -100 0 100 200 -100 O 100 200
Mean deviation WC [mm]
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Increasing spatial resolution using soil sensor
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information and point based texture
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Application of high resolution soil map
for spatio-temporal modelling
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ions for water protection
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Evaluating rotat
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Mulching cover crop resiaues

may compensate it’s higher water use

Simulated daily soil water storage
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Simulated (RZWQM2) soil water storage (1.8 m) under a) maize and b) soybean after winter fallow or rye cover crop, and
related soil evaporation E under c) maize and d) soybean (40 years for each crop during 1938-2017) (Yang et al. 2019)
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Testing the feasibility of new crops and
double cropping under present climatic conditions in Germany

25 single crop maize Wint}ar rye + maize 25 25 Single crop sorghum Winter rye + sorghum 25
207 20 20 o 20
T 15] y 15 T 15 15
< e
£ 110 10 "= 10 I 10
©
55 | e 51 j F -5 3/5 ] — R j -5
E 0 = = x O E O * Pala P 0
2 <5
= =
% 25 Single crop sunflower Winter rye + sunflower 25 % 25 Single crop sudan gras | Winter rye + sudan gras 25
e 207 ' 20 £ 20 ) ) '20
2 .l e 2 I
o 15 { 15 7 15 15
104 10 10 g 10
5 - j 15 5 R // 5
0 =T 0 0 boees — O
J F M A M J J A S O F M A M S O S ) FMAM J J A S Ok F M A M S

Site Witzenhausen/Germany
Year 2010
Simulation HERMES

Gral} et al. 2015, Eur. J. Agron.



G e Future water availability and competition has
to be taken into account under Climate Change
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G oy CO,-effects have to be considered in climate
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change impact studies
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@ e EXtrapolation to other sites to assess CC impact

Based on 1:1.000.000 soil map
Local weather station scenarios

Kersebaum & Nendel 2014



G s Climate change effects are site specific!

Hannover i Miincheberg
A) B 25 - 20 . . B)
20--15 Calcaric and Umbric Regosols
= -15--10 from sandy to loamy moraine deposits
N . C]-10--5
Haplic and Cambic Podzols from [ ]5--2 EutricCambisols Fluvisols/Gleysols from
dry dystrophic sand deposits [ ]-2-2 from sand deposits loamy and clay
% fluviatile sediments

sandy to loamy

uviatile sediments
Fluvisols/Gleysols from

loamy to clay
fluviatile sediments :

'/i sandy to loamy
I fluviatile sediments

Cambic Podzols from

dry dystrophic sand deposits
Vertic Cambisols/stagnic Gleysols Dystric Podzoluvisols/Cambisols Ll P

Haplic Luvisols from loess from marlstone/claystone weathering from sandy sediments
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20 30 40 50 Kilometers

Kersebaum & Nendel 2014



G e Relevance of processes may change with site

L T Soninental

S S B maritime

T
1 T e I
T e R

L 1 e

Teff [%]

1
L1

e

J T T e e e e = ™ "

R T e e e
Fluvisol with gw sand loess

Fig.5. Comparison of the contribution of the CO, transpiration effect (Eq. (7); My ) to
the combined CO; effect (My+) for two different climates (continental: precipitation
<510mmyr-', maritime: precipitation >700 mmyr-1) at sites with groundwater-
affected Fluvisols and with sandy and loamy soils without groundwater influence.

Kersebaum & Nendel 2014

Conclusion:
reduced stomata conductance may
bridge moderate water stress, but

does not compensate long severe drought
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G e O1MUlated and observed effects of fertilizer treatments
on soil organic carbon (0-30 cm) in Miincheberg LTFE
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Comparison of simulated soil organic matter stocks

(0-30 cm) and plant available water for two plots

C stock [Kg C/ha]
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How is C sequestration related to nitrogen and N,O emissions?

YV V VY VYV

Y VY

E%ﬁcggﬁlﬁruu uqllj =

Sequestering Soil Organic Carbon: A Nitrogen Dilemma

. ~ . e, t ~ . > N v
Jan Willem van Groenigen,*" Chris van Kessel,” Bruce A. Hungate,” Oene Oenema,
3 § g 1 > < p okt
David S. Powlson,” and Kees Jan van Groenigen

il

Main statements:
Soil organic matter (SOM) contains nitrogen (N) as well as C, and it is unclear what will be the origin of this N.

Implementing the 4 per mile initiative on all agricultural soils would require a SOC sequestration rate of 1200 Tg C yr1.
Assuming an average C-to-N ratio of 12 in SOM, this would require 100 Tg N yr1.

This equals an increase of ~75% of current global N-fertilizer production, or extra symbiotic N, fixation rates equaling
twice the current amount in all agricultural systems.

In theory, the current N surplus in global agroecosystems would be sufficient to provide the required 100 Tg N yr*.
However, these surpluses are not evenly distributed but concentrated in specific regions.

Even if the N surpluses were more evenly distributed, they would first have to be accumulated by crops in order to
supply organic C to the soil.

The rate of N accumulated in global cropland residue is estimated to be ~30 Tg N yr~!



e aosnasnsrs SiMUlated annual N leaching for two selected plots with
similar soil properties and different N treatments
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Carbon and nitrogen stocks depending on crop rotation and treatments Cumulative growing season N,O emissions
(LTFE Breton, Canada, est. 1930) (2013-2016) 3
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G g First results of Corg and annual sums of N,O fluxes
for along term field experiment at Hnevceves (Cz)
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(g s Assessment of biotic stress on crop growth

» Crop models are considering water and nutrient limitations, but
rarely damages from pest and diseases.

» There are models describing pest and disease development
depending on weather variables.

> Interdependencies between crops and P & D are often not
considered or rely on observed data and empirical relations.

» P & D models are mainly used to initiate pesticide application,
rarely for crop loss assessment.

» Estimation of crop loss could improve



(G oo What would be the benefit of a better
(model based) estimation of crop loss from P&D?

Better understanding of pest and disease drivers to derive
management options

Management decisions based on economic cost-benefit analysis
Simulation of what-if scenarios

Reduced impact on human health and environment due to smart
pesticide application

Assessment of P&D impact on crop production under changing
boundary conditions, e.g. climate change
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Damages caused by P&D, which can be linked to crop models

Damage

mechanism

Physiological effect

Effect in a crop

growth model

Examples of pests

Light stealer

Reduces the

intercepted radiation

Reduces the green LAI

Pathogens producing

lesions on leaves

Leaf senescence

accelerator

Increases leaf
SENESCence, Caluses

defoliation

Reduces the biomass of
leaves by increasing the

rate of leaf senescence

Foliar pathogens such as
leaf-spotting pathogens,

downy mildews

Tissue consumer

Reduces the tissue

biomass

Outflows from
biomasses of the

injured organs

Defoliating insects

Stand reducer

Reduces the number

and biomass of plants

Reduces biomass of all

organs

Damping-off fungi

Photosynthetic rate

reducer

Reduces the rate of

carbon uptake

Reduces the RUE

Wiruses, root-infecting
pests, stem-infecting pests,

some foliar pathogens

Turgor reducer

Disrupts xylem and

phloem transport

Reduces the RUE,
accelerates leaf

senescence

Wascular, wilt pathogens

Assimilate sapper

Removes soluble

assimilates from host

Outflows assimilates
from the pool of

assimilates

Sucking insects, e.g.
aphids, some planthoppers,
biotrophic fungi exporting

assimilates from host cells

* Derived from Rabbinge and Vereyken (1980), Rabbinge and Rijsdijk (1981) and Boote et al. (1983).

from Savary & Willocquet



G o Damages light steeler and assimilate sapper

implemented into fi\_/e crop models for four fungal deseases

Contents lists available at ScienceDirect

and injured leaf area (unitless) and grain dry matter (t ha')

Crelel D Frerearil Brown rust | Yellow rust | [Powdery mildew | | Septoria tritici | Combined 5
- ~d 7 by
EI SEVIER journal homepage: www.elsevier.com/locate/fcr 6 :—E 8
5 =i
4 S
&
Comparing process-based wheat growth models in their simulation of yield | & 2 % 5
losses caused by plant diseases (1) S|Z
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Concluding thoughts

»All models are wrong but some are useful“

by George Box (1979)

Is the model the best way to answer the question?

- There is no best way and there is no unique model!

But in many cases a model is a better way to understand a real
system than any other known approach.

- Find an appropriate (a useful) model!
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Thank you
for your
attention




